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LETTER TO THE EDITOR 

On the correlation between sizes and shapes of cells in 
epithelial mosaics 

N Rivier and A Lissowski 
Blackett Laboratory, Imperial College, London, SW7 2BZ, England 

Received 22 October 1981 

Abstract. It is shown that Lewis’ empirical, linear relationship between the average area of 
a cell and the number of its sides in two-dimensional mosaics corresponds to maximal 
arbitrariness in the cellular distribution. An expression for the distribution is given in the 
general case. 

In 1928, Lewis (1928, 1943, 1944) observed in several two-dimensional cellular 
mosaics (cucumber epidermis, pigmented epithelium of the retina, etc), at various 
stages of their development, a specific relationship between the average area A, of a 
resting cell and the number n of its edges, 

A, = U (n - 2) (1) 
where a = Ao/4F, for a tissue containing F cells covering a total area Ao. Either one or 
both of A. and F can be time dependent, to account for growth and cellular division; yet 
the relationship (1) is valid throughout the development of the tissue. 

In this letter, we shall give a mathematical justification for Lewis’ law (1). It will be 
shown to be a consequence of the equilibrium between entropy and organised form, in 
this case, the existence of space-filling cells and their topology. 

The cellular tissue is described by a distribution of faces (cells) {F,} with n edges, 
n = 3,4,. . . , N + 2 .  F, is the number of faces with n edges, and pn = F,/F, the 
probability of finding an n-sided face. Neither spatial inhomogeneity (dependence of pn 
on position) nor correlation between the number of sides of neighbouring cells need be 
assumed in this letter. The cell distribution {F,} must satisfy the following constraints 

Normalisation C F , = F  (2) 

Fixed total area A 3 ’ n  =Ao (3) 

Topology (6-n)Fn =O.  (4) 

(Equation (2) is simply the normalisation of the probability distribution Z p ,  = 1. 
Equation (4) is a direct consequence of Euler’s theorem relating the number of faces F, 
edges E and vertices V covering a two-dimensional manifold of Euler-Poincare 
characteristics x, F -E + V = x ; (A). ,y describes the global character of the manifold. 
For a sphere, x = 2, and for an s-handed torus, it is ,y = 2(1- s ) .  Unlike F, E and V, it 
does not scale with the number of faces, and, for a large tissue, ,y = 0(1) is negligible in 
comparison with F, E, V = O(F). We have the relations HnF, = 2E (B) since every 
edge separates two faces, and Ba V, = 2E, since every edge joins two vertices and every 
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vertex of connectivity a has a incident edges. In a cellular mosaic, we can assume that 
a = 3, since an exceptional vertex with cy = 4, say, can be transformed by an infinitesi- 
mal distortion into two a = 3 vertices connected by an additional edge. Therefore, only 
a = 3 vertices are structurally stable. Thus V = ($)E;  (C) .  Equations (B) and ( C )  into 
(A) yield equation (4), or precisely, X(6 - n ) p ,  = 6 x / F  = 0(1 /F )  - 0 in the limit of a 
large number of cells F + 00.) 

The cellular structure of the mosaic is therefore a solution of the system of linear, 
inhomogeneous equations (2)-(4), with N unknowns F,, written in matricial form 

FM=G ( 5 )  

with F = (F3. . . FN+2) and G = (FAoO). M is a ( N  x 3) matrix. The solutions of the 
system ( 5 )  lie in a hyperplane of dimension d = N - r, where r is the rank of the matrix 
M. 

In general, that is for arbitrary area relationships A,, r = 3 ,  and d = N - 3 .  The rank 
of M is r = 2, if and only if there is a linear relationship between the three equations 
(2)-(4), (2) = A (4) + p (3), so that A, is a linear function of n, 

1 - A ( 6 - n ) - @ A n  = O  16) 

with A and p so far arbitrary. Moreover, the inhomogeneous, linear system ( 5 )  has a 
solution if and only if M and the amplified matrix formed by affixing G as an additional 
row to M have the same rank, r = 2. This yields 

F - /LAO = 0. 

Thus, 

A,  = ( A o / F ) A [ n - ( 6 - 1 / A ) ] .  

Lewis’s law (1) is obtained if one adds another obvious topological relation expressing 
the fact that a cell has at least three edges, A2 = 0, which yields A = a. This last condition 
is not necessary and may be too strong in general. Lewis (193 1) (see also Smoljaninov 
1980) has given examples of tissues following (8) with 2 # 6 - 1 / A  < 3. The cases r > 3 
or r = 1 are clearly impossible. 

Consider, for example, a tissue containing 5 - ,  6- and 7-sided cells only. Equations 
(2)-(4)yieldF7=F5, F6=F-2F5,  and(A5+A7-2A6)F5=AO-A6F. Thislastequa- 
tion fixes Fs, and therefore the {F,} distribution, unless the areas satisfy Lewis’s law (8), 
in which case it becomes an identity 0 = 0, and F5 remains arbitrary. 

Thus Lewis’s law (1) or (8) corresponds to maximal arbitrariness in the distribution 
{ p , }  of the various cells, which lie then in a hyperplane of higher dimension than in the 
general case. The only constraints in the distribution are its normalisation and its mean 
( n ) = 6  (the topological relation (4)). Even its variance can be chosen freely. Two 
apparently dissimilar tissues can both satisfy Lewis’s law, and so can normal and 
pathological cell mosaics in the same tissue. 

To give a precise meaning to the concept of arbitrariness, and derive a relation 
between p, and A,  in the general case r # 2, we must use information theory (Shannon 
1948). Among all possible distributions of cells compatible with physical, topological 
and possibly biological constraints, a large system will take the most probable 
configuration, i.e. that which maximises the entropy or arbitrariness 

H = -1 P, In pn (9) 

subject to the constraints mentioned above. Any other distribution would betray 
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additional assumptions on the system which should have been included among the 
constraints. 

The constraints are given by equations (2)-(4). Using indeterminate Lagrange 
multipliers a, @ and y we maximise 

for the variables pn, and obtain 

-In Pn - 1 -a -@An - y(6 - n) = 0. 

Thus, 

with 2 = 2, exp(yn -@An), and y and p determined by equation (4), 6 = Znp, = 
@/ay) In 2, and equation (3) A o / F  = 2p,,An = -(a/@?) In 2. There is a close parallel 
between our problem and equilibrium statistical thermodynamics, where a large 
assembly of identical systems takes up the most probable distribution among the 
possible states available to any one system. In particular, Jaynes (1957) has shown that 
a constructive, subjective statistical mechanics could be constructed on the basis of 
information theory. 

Suppose now that the area law can be varied to maximise the entropy further. In the 
absence of restrictions (3) and (4), the entropy or arbitrariness reaches its absolute 
maximum, f i = l n N ,  if the N configurations are equiprobable, pn =N-' .  In the 
presence of the constraints, it is useful to introduce the moments p, of the probability 
distribution, 

ps = C n ' P n  po= 1 
n 

and to expand the function A, in power series in n, 

m 
A. =ao+ C aini, 

i = l  

The constraints (4) and (3) read now 

p1=6 (4') 
a. + C aipi = Ao/F (3') 

respectively. To vary the area law (14), we shall vary the parameters ai (i 3 1). QO, 

which does not affect pn and therefore H, can be regarded as a constant. All the ai are 
independent variables, except two which are related to the others through the con- 
straints (3') and (4'). Variation of the ai implies variation of y, p and the moments pi. 
However, the entropy H 

H({aiI)=-ypl+B C aipi+lnZ (15) 

is stationary in the Lagrange multipliers y and @, as can be verified immediately. (It is in 
fact the Legendre transform of In 2, a standard manipulation in thermodynamics.) 
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Denoting Sf = I; Saj(af/dai) we extremise, the entropy 

o = SH = [ (a / t+y)  In z - p l l  ~y + ((a/ap) In z - 1 uip j j  

The coefficients of Sy and Sp vanish identically (stationarity), as do the third and fourth 
terms because of the constraints (3’) and (4’). Moreover, (a/aa,) In 2 = -pp, and (3’) 
yields Xp, Sa, = -Xul Sp, so that 

0 = SH = -p c p, Sa, = p c a, Spl (17) 

which has the obvious solution a, = 0 ( i  2 2). a l  remains arbitrary because Spl = 0 
(equation (4’)). Thus, maximal arbitrariness (17) makes the area (14) follow the 
generalised Lewis law (9, because a. and a are related by the constraints, a. + 6a = 
Ao/F. (The a, are not all independent variables, and some care must be taken in solving 
(17). Let Sal and Sa2 be related to the other Sa, through (3’) and (4‘). Using 
Spl = I;l(ap,/aal) Sal, with ap,/aal = -p(p l+ l  - plpl) ,  we can write (17) in terms of 
independent variations 0 = I;,a3 SulI;l(cpllul) where cptl  are third-order polynomials in 
the moments p3 with cpI1 = 0. The solution is thus I;qllal = 0 i.e. ai = 0 (1 3 2) as above. 
The existence of another solution would imply an intricate relation between moments. 
It is unlikely, but we shall discuss it below.) 

The probability (12) of finding an n-sided face obeying Lewis’s area law (8) has the 
form 

p n  atexp(-xn). (18) 

where x = y -pal. It increases with n ( K  < 0) for N < 7, is flat for N = 7, and decreases 
with increasing I ~ ( K  >0) for N>7.  For N +  a, p n  = ( T ) ( T )  , and the entropy is 
H = 4 In 4 - 3 In 3, well below fi expected in the absence of constraint. Lewis’s law 
yields maximal entropy because the two Lagrange multipliers ensuring the constraints 
always appear in the combination y -pal,  and not independently. 

The distribution of resting cells of the cucumber epidermis (Lewis 1928) does not 
follow the exponential probability law (18), even though their area satisfies Lewis’s law 
(1). This means that there is one or several other, yet unidentified, constraints, in 
addition to (3) and (4), 

1 3 ,1-2 

say. The calculation (lo)-( 17) proceeds exactly as above, with additional Lagrange 
multiplier(s) S, and one obtains the probability distribution 

instead of (12), with 2 =I; exp(yn -PAn - l f , , ) .  Equation (17) now has two solutions: 
either A ,  mimics the topological constraint A ,  = ao+aln, or it mimics the new 
constraint (19), An = a. + qfn. In either case, the probability distribution has the form 
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Both solutions maximise the entropy to the same value, because (n) = 6 and fo are equal 
in both cases. However, there is no physical reason for A,  to be related to f,, but every 
reason that it should follow the topological constraint A, = a0 + aln. 

As an illustration, let us return to tlie tissue with only 5, 6- and 7-sided cells. 
Suppose that we had initially, for example immediately after several cellular divisions, a 
tissue with average areas f, and fo different from the resting situation A,,Ao/F.  
Suppose further that the system is left to develop towards the resting situation through 
growth only, without cellular division or exchange of edges between cells, i.e. by 
keeping its distribution {F,} invariant. The same {F,} must therefore satisfy the four 
constraints (2)-(4) and (19), which reduce to F7 = F5, F6 = F - 2F5, with two linear 
equations for the single unknown F5, (A5 +A7- 2A6)F5 = Ao-A6F and (f5 +f7-  

2f6)F~ = (fo-f6)F. These two equations have a solution if and only if either the A, 
satisfy Lewis’s law (8), in which case the first equation being an identity, FS is given by 
the second equation, i.e. by the initial conditions, or the two equations are proportional, 
( A o - A 8 ) / ( A 5 + A 7 - 2 A 6 ) =  (f0-f6)F/(f5+f7-2f6), and the tissue develops in a 
self-similar fashion, A, = a. + ~ f ” .  Here, we need maximal arbitrariness to have a 
solution at all. ?he same discussion could be made by comparing the tissue in a resting 
situation and just about to undergo several cellular divisions, under the same hypo- 
theses. 

In conclusion, we have shown that the relation (8) between average cell area and the 
number n of its edges corresponds to the tissue selecting, for a given density, a cell 
distribution of maximal arbitrariness or minimal information, but compatible with 
topological constraints. We have also given a general expression (12) or (20) for the cell 
distribution in the general case with any given area law A,. 

In the absence of a specific, dynamical mechanism regulating the area of individual 
cells, the tissue takes up the most probable cell distribution, which implies a correlation 
between cell sizes and cell shapes, Lewis’ law (1) or (8). 

The same analysis of Lewis’s law applies, of course, to any random two-dimensional 
mosaics, for example to crystal aggregates in metallurgy (see, for example, Kurtz and 
Carpay 1980, and references therein), or to the solar granulation (a mosaic of 
convection cells) (Bray and Loughead 1967). 

Lewis’s law is therefore of diagnostic importance. If a mosaic does not obey it, then 
the average area of its constituent cells is not regulated simply by the area-filling 
requirement, but by a specific mechanical or biological law (which it is of obvious 
interest to isolate) or by the fact that space-filling constraints act in a higher dimension. 
As an example of the latter, plane sections of three-dimensional crystal aggregates 
have different statistical properties (the crystal sections are more equiaxial) from 
crystals grown in very thin strips, for which the requirements of space-filling are 
genuinely two-dimensional (Meijering 1953), and which may follow Lewis’s law. 
Monte Carlo generated mosaics, the Voronoi polygons of Poisson-distributed seeds 
(Crain 1978), which correspond to Meijering’s cell model, are clearly free of dynamical 
constraints. The average polygon area does indeed follow Lewis’s law (Crain 1978, 
table 3). 

Two-dimensional mosaics can therefore be separated into two classes by Lewis’s 
law. Area statistics is either determined solely by space-filling requirements, and obeys 
Lewis’s law, or by a particular, probably local dynamic interaction. In view of the 
complexity of biological tissues or of crystal growth, it is fortunate and astonishing, or 
further evidence for the attraction of the most probable distribution in large systems, 
that the first class is non-empty. 
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